
CHAPTER 1

Contents Previous Next
CHAPTER 1 Introduction

1.1 Overview

The Climate Data Management System is an object−oriented data management system, specialized for
organizing multidimensional, gridded data used in climate analysis and simulation.

CDMS is implemented as part of the Climate Data Analysis Tool (CDAT), which uses the Python language.
The examples in this chapter assume some familiarity with the language and the Python Numeric module
(http:// numpy.sf.net). A number of excellent tutorials on Python are available in books or on the Internet. For
example, see http://python.org .

1.2 Variables

The basic unit of computation in CDMS is the variable. A variable is essentially a multidimensional data
array, augmented with a domain, a set of attributes, and optionally a spatial and/or temporal coordinate
system (see Coordinate Axes on page 11). As a data array, a variable can be sliced to obtain a portion of the
data, and can be used in arithmetic computations. For example, if u and v are variables representing the
eastward and northward components of wind speed, respectively, and both variables are functions of time,
latitude, and longitude, then the velocity for time 0 (first index) can be calculated as

>>> from cdms import MV
>>> vel = MV.sqrt(u[0]**2 + v[0]**2)

This illustrates several points:

 Square brackets represent the slice operator. Indexing starts at 0, so u[0] selects from variable u for
the first timepoint. The result of this slice operation is another variable. The slice operator can be
multidimensional, and follows the syntax of Numeric Python arrays. In this example, u[0:10,:,1]
would retrieve data for the first ten timepoints, at all latitudes, for the second longitude.

•

 Variables can be used in computation. '**' is the Python exponentiation operator.•
 Arithmetic functions are defined in the cdms.MV module.•
 Operations on variables carry along the corresponding metadata where applicable. In the above
example, vel has the same latitude and longitude coordinates as u and v, and the time coordinate is the
first time of u and v.

•

1.3 File I/O

A variable can be obtained from a file or collection of files, or can be generated as the result of a computation.
Files can be in any of the self−describing formats netCDF, HDF, GrADS/GRIB (GRIB with a GrADS control
file), or PCMDI DRS. (HDF and DRS support is optional, and is configured at the time CDAT is installed.)
For instance, to read data from file sample.nc into variable u:

>>> import cdms

1/14

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/front_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/front_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html

>>> f = cdms.open('sample.nc')
>>> u = f('u')

Data can be read by index or by world coordinate values. The following reads the n−th timepoint of u (the
syntax slice(i,j) refers to indices k such that i <= k < j):

>>> u0 = f('u',time=slice(n,n+1))

To read u at time 366.0:

 >>> u1 = f('u',time=366.)
A variable can be written to a file with the write function:

>>> g = cdms.open('sample2.nc','w')

>>> g.write(u)
<Variable: u, file: sample2.nc, shape: (1, 16, 32)>
>>> g.close()

1.4 Coordinate Axes

A coordinate axis is a variable that represents coordinate information. Typically an axis is associated with one
or more variables in a file or dataset, to represent the indexing and/or spatiotemporal coordinate system(s) of
the variable(s).

Often in climate applications an axis is a one−dimensional variable whose values are floating−point and
strictly monotonic. In some cases an axis can be multidimensional (see Grids on page 17). If an axis is
associated with one of the canonical types latitude, longitude, level, or time, then the axis is called
tepemporal.

The shape and physical ordering of a variable is represented by the variables domain, an ordered tuple of
one−dimensional axes. In the previous example, the domain of the variable u is the tuple (time, latitude,
longitude). This indicates the order of the dimensions, with the slowest−varying dimension listed first (time).
The domain may be accessed with the getAxisList method:

>>> s.getAxisList()
[id: lat

Designated a latitude axis.
units: degrees_north
Length: 64

2/14

First: −87.8637970305
Last: 87.8637970305
Other axis attributes:

long_name: latitude
axis: Y
Python id: 833efa4

, id: lon
Designated a longitude axis.
units: degrees_east
Length: 128
First: 0.0
Last: 357.1875
Other axis attributes:

modulo: 360.0
topology: circular
long_name: longitude
axis: X

Python id: 833f174
]

In the above example, the domain elements are axes that are also spatiotemporal. In general it is not always
the case that an element of a domain is spatiotemporal:

 An axis in the domain of a variable need not be spatiotemporal. For example, it may represent a
range of indices, an index coordinate system.

•

 The latitude and/or longitude coordinate axes associated with a variable need not be elements of the
domain. In particular this will be true if the variable is defined on a non−rectangular grid (see Grids
on page 17).

•

As previously noted, a spatial and/or temporal coordinate system may be associated with a variable. The
methods getLatitude, getLongitude, getLevel, and getTime return the associated coordinate axes. For
example:

>>> t = u.getTime()
>>> print t[:]
[0., 366., 731.,]
>>> print t.units
'days since 2000−1−1'
1.5 Attributes

As mentioned above, variables can have associated attributes, name−value pairs. In fact, nearly all CDMS
objects can have associated attributes, which are accessed using the Python dot notation:

3/14

>>> u.units='m/s'
>>> print u.units
m/s
Attribute values can be strings, scalars, or 1−D Numeric arrays.

When a variable is written to a file, not all the attributes are written. Some attributes, called internal attributes,
are used for bookkeeping, and are not intended to be part of the external file representation of the variable. In
contrast, external attributes are written to an output file along with the variable. By default, when an attribute
is set, it is treated as external. Every variable has a field attributes, a Python dictionary that defines the
external attributes:

>>> print u.attributes.keys()
['datatype', 'name', 'missing_value', 'units']
The Python dir command lists the internal attribute names:

>>> dir(u)
['_MaskedArray__data', '_MaskedArray__fill_value,' ..., 'id',

'parent']
In general internal attributes should not be modified directly. One exception is the id attribute, the name of the
variable. It is used in plotting and I/O, and can be set directly.

1.6 Masked values

Optionally, variables have a mask that represents where data are missing. If present, the mask is an array of
ones and zeros having the shape of the data array. A mask value of one indicates that the corresponding data
array element is missing or invalid.

Arithmetic operations in CDMS take missing data into account. The same is true of the functions defined in
the cdms.MV module. For example:

>>> a = MV.array([1,2,3]) # Create array a, with no mask
>>> b = MV.array([4,5,6]) # Same for b
>>> a+b
variable_13
array([5,7,9,])
>>> a[1]=MV.masked # Mask the second value of a
>>> a.mask() # View the mask
[0,1,0,]
>>> a+b # The sum is masked also
variable_14
array(

data = [5,0,9,],
mask = [0,1,0,],

4/14

fill_value=[0,]
)

When data is read from a file, the result variable is masked if the file variable has a missing_value attribute.
The mask is set to one for those elements equal to the missing value, zero elsewhere. If no such attribute is
present in the file, the result variable is not masked.

When a variable with masked values is written to a file, data values with a corresponding mask value of one
are set to the value of the variables missing_value attribute. The data and missing_value attribute are then
written to the file.

Masking is covered in Section 2.9. See also the documentation of the Python Numeric and MA modules, on
which cdms.MV is based, at http:// numpy.sourceforge.net .

1.7 File Variables

A variable can be obtained either from a file, a collection of files, or as the result of computation.
Correspondingly there are three types of variables in CDMS:

file variable is a variable associated with a single data file. Setting or referencing a file variable
generates I/O operations.

•

 A dataset variable is a variable associated with a collection of files. Reference to a dataset variable
reads data, possibly from multiple files. Dataset variables are read−only.

•

 transient variable is an in−memory object not associated with a file or dataset. Transient variables
result from a computation or I/O operation.

•

Typical use of a file variables is to inquire information about the variable in a file without actually reading the
data for the variables. A file variable is obtained by applying the slice operator [] to a file, passing the name of
the variable, or by calling the getVariable function. Note that obtaining a file variable does not actually read
the data array:

>>> f = cdms.open('sample.nc','r+')
>>> u = f.getVariable('u') # or u=f['u']
>>> u.shape
(3, 16, 32)
File variables are also useful for fine−grained I/O. They behave like transient variables, but operations on
them also affect the associated file. Specifically:

 slicing a file variable reads data, •
setting a slice writes data,•
referencing an attribute reads the attribute, •
 setting an attribute writes the attribute, •
and calling a file variable like a function reads data associated with the variable:•

>>> f = cdms.open('sample.nc','r+') # Open read/write
>>> uvar = f['u'] # Note square brackets
>>> uvar.shape
(3, 16, 32)
>>> u0 = uvar[0] # Reads data from sample.nc

5/14

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html%5C#2.9_MV_module
http://%20numpy.sourceforge.net/

>>> u0.shape
(16, 32)
>>> uvar[1]=u0 # Writes data to sample.nc
>>> uvar.units # Reads the attribute
'm/s'
>>> uvar.units='meters/second' # Writes the attribute
Calling a variable like a function reads data
>>> u24 = uvar(time=24.0)
>>> f.close() # Save changes to sample.nc (I/O may be buffered)

In an interactive application, the type of variable can be determined simply by printing the variable:

>>> rlsf # Transient variable
rls
array(
 array (4,48,96) , type = f, has 18432 elements)
>>> rlsg # Dataset variable
<Variable: rls, dataset: mri_perturb, shape: (4, 46, 72)>
>>> prc # File variable
<Variable: prc, file: testnc.nc, shape: (16, 32, 64)>

Note that the data values themselves are not printed. For transient variables, the data is printed only if the size
of the array is less than the print limit. This value can be set with the function MV.set_print_limit to force the
data to be printed:

>>> smallvar.size() # Number of elements
20
>>> MV.get_print_limit() # Current limit
300
>>> smallvar
small variable
array(
 [[0., 1., 2., 3.,]
 [4., 5., 6., 7.,]
 [8., 9., 10., 11.,]
 [12., 13., 14., 15.,]
 [16., 17., 18., 19.,]])
>>> largevar.size()
400
>>> largevar
large variable
array(
 array (20,20) , type = d, has 400 elements)
>>> MV.set_print_limit(500) # Reset the print limit
>>> largevar
large variable
array(

[[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,]
...])

6/14

The datatype of the variable is determined with the typecode function:

>>> x.typecode()
'd'
1.8 Dataset Variables

The third type of variable, a dataset variable, is associated with a dataset, a collection of files that is treated as
a single file. A dataset is created with the cdscan utility. This generates an XML metafile that describes how
the files are organized and what metadata are contained in the files. In a climate simulation application, a
dataset typically represents the data generated by one run of a general circulation or coupled
ocean−atmosphere model.

For example, suppose data for variables u and v are stored in six files: u_2000.nc, u_2001.nc, u_2002.nc,
v_2000.nc, v_2001.nc, and v_2002.nc. A metafile can be generated with the command:

% cdscan −x cdsample.xml [uv]*.nc
The metafile cdsample.xml is then used like an ordinary data file:

>>> f = cdms.open('cdsample.xml')
>>> u = f('u')
>>> u.shape
(3, 16, 32)
1.9 Grids

A latitude−longitude grid represents the coordinate information associated with a variable. A grid
encapsulates:

 latitude, longitude coordinates •
grid cell boundaries •
area weights•

CDMS defines a rich set of grid types to represent the variety of coordinate systems used in climate model
applications. Grids can be categorized as rectangular or nonrectangular.

A rectangular grid has latitude and longitude axes that are one−dimensional, with strictly monotonic values.
The grid is essentially the Cartesian product of the axes. If either criterion is not met, the grid is
nonrectangular.

CDMS supports two types of nonrectangular grid:

A curvilinear grid consists of a latitude and longitude axis, each of which is a two−dimensional
coordinate axis. Curvilinear grids are often used in ocean model applications.

•

A generic grid consists of a latitude and longitude axis, each of which is an auxiliary
one−dimensional coordinate axis. An auxiliary axis has values that are not necessarily monotonic. As
the name suggests, generic grids can represent virtually any type of grid. However, it is more difficult
to determine adjacency relationships between grid points.

•

7/14

1.9.1 Example: a curvilinear grid

In this example, variable sample is defined on a 128x192 curvilinear grid. Note that:

The domain of variable sample is (y,x) where y and x are index coordinate axes.•
The curvilinear grid associated with sample consists of axes (lat, lon), each a two−dimensional
coordinate axis.

•

lat and lon each have domain (y,x) •

>>> f = cdms.open('sampleCurveGrid.nc')

lat and lon are coordinate axes, but are grouped
with data variables
>>> f.variables.keys()
['lat', 'sample', 'bounds_lon', 'lon', 'bounds_lat']

y and x are index coordinate axes
>>> f.axes.keys()
['y', 'x', 'nvert']

Read data for variable sample
>>> sample = f('sample')
The associated grid g is curvilinear
>>> g = sample.getGrid()
>>> g
<TransientCurveGrid, id: grid_1, shape: (128, 192)>

The domain of the variable consists of index axes
>>> sample.getAxisIds()
['y', 'x']

Get the coordinate axes associated with the grid
>>> lat = g.getLatitude() # or sample.getLatitude()
>>> lon = g.getLongitude() # or sample.getLongitude()

lat and lon have the same domain, a subset of
the domain of 'sample'
>>> lat.getAxisIds()
['y', 'x']

lat and lon are variables ...
>>> lat.shape
(128, 192)
>>> lat
lat
array(

array (128,192) , type = d, has 24576 elements)

... so can be used in computation
>>> lat_in_radians = lat*Numeric.pi/180.0

8/14

FIGURE 1. Curvilinear grid

1.9.2 Example: a generic grid

In this example variable zs is defined on a generic grid. Figure 2 illustrates the grid, in this case a geodesic
grid.

>>> f.variables.keys()
['lat', 'bounds_lon', 'lon', 'zs', 'bounds_lat']
>>> f.axes.keys()
['cell', 'nvert']
>>> zs = f('zs')
>>> g = zs.getGrid()
>>> g
<TransientGenericGrid, id: grid_1, shape: (2562,)>
>>> lat = g.getLatitude()
>>> lon = g.getLongitude()
>>> lat.shape
(2562,)
>>> lon.shape
(2562,)
variable zs is defined in terms of a single index coordinate

axis, 'cell'
>>> zs.shape
(2562,)
>>> zs.getAxisIds()
['cell']

lat and lon are also defined in terms of the cell axis
>>> lat.getAxisIds()

9/14

['cell']

lat and lon are one−dimensional, 'auxiliary' coordinate
axes: values are not monotonic
>>> lat.__class__
<class cdms.auxcoord.TransientAuxAxis1D at 0x82eea24>

FIGURE 2. Generic grid

Generic grids can be used to represent any of the grid types. The method toGenericGrid can be applied to
any grid to convert it to a generic representation. Similarly, a rectangular grid can be represented as
curvilinear. The method toCurveGrid is used to convert a non−generic grid to curvilinear representation:

>>> import cdms
>>> f = cdms.open('clt.nc')
>>> clt = f('clt')
>>> rectgrid = clt.getGrid()
>>> rectgrid.shape
(46, 72)
>>> curvegrid = rectgrid.toCurveGrid()
>>> curvegrid
<TransientCurveGrid, id: grid_1, shape: (46, 72)>
>>> genericgrid = curvegrid.toGenericGrid()
>>> genericgrid
<TransientGenericGrid, id: grid_1, shape: (3312,)>
>>>

1.10 Regridding

Regridding is the process of mapping variables from one grid to another. CDMS supports two forms of
regridding. Which one you use depends on the class of grids being transformed:

To interpolate from one rectangular grid to another, use the built−in CDMS regridder. CDMS also has
built−in regridders to interpolate from one set of pressure levels to another, or from one vertical

•

10/14

cross−section to another.
To interpolate from any lat−lon grid, rectangular or non−rectangular, use the SCRIP regridder.•

1.10.1 CDMS Regridder

The built−in CDMS regridder is used to transform data from one rectangular grid to another. For example, to
regrid variable u (from a rectangular grid) to a 96x192 rectangular Gaussian grid:

>>> u = f('u')
>>> u.shape
(3, 16, 32)
>>> t63_grid = cdms.createGaussianGrid(96)
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
(3, 96, 192)

To regrid a variable uold to the same grid as variable vnew:

>>> uold.shape
(3, 16, 32)
>>> vnew.shape
(3, 96, 192)
>>> t63_grid = vnew.getGrid() # Obtain the grid for vnew
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
(3, 96, 192)

1.10.2 SCRIP Regridder

To interpolate between any lat−lon grid types, the SCRIP regridder may be used. The SCRIP package was
developed at Los Alamos National Laboratory (http://climate.lanl.gov/Software/SCRIP/). SCRIP is written in
Fortran 90, and must be built and installed separately from the CDAT/ CDMS installation.

The steps to regrid a variable are:

(external to CDMS)

Obtain or generate the grids, in SCRIP netCDF format.1.
 Run SCRIP to generate a remapping file.2.

(in CDMS)

Read the regridder from the SCRIP remapping file.1.
Call the regridder with the source data, returning data on the target grid. 2.

Steps 1 and 2 need only be done once. The regridder can be used as often as necessary.

For example, suppose the source data on a T42 grid is to be mapped to a POP curvilinear grid. Assume that
SCRIP generated a remapping file named rmp_T42_to_POP43_conserv.nc:

Import regrid package for regridder functions
import regrid, cdms

11/14

Get the source variable
f = cdms.open('sampleT42Grid.nc')
dat = f('src_array')
f.close()

Read the regridder from the remapper file
remapf = cdms.open('rmp_T42_to_POP43_conserv.nc')
regridf = regrid.readRegridder(remapf)
remapf.close()

Regrid the source variable
popdat = regridf(dat)

Regridding is discussed in Chapter 4.

1.11 Time types

CDMS provides extensive support for time values in the cdtime module. cdtime also defines a set of
calendars, specifying the number of days in a given month.

Two time types are available: relative time and component time. Relative time is time relative to a fixed base
time. It consists of:

a units string, of the form "units since basetime", and•
a floating−point value•

For example, the time "28.0 days since 1996−1−1" has value=28.0, and units="days since 1996−1−1". To
create a relative time type:

>>> import cdtime
>>> rt = cdtime.reltime(28.0, "days since 1996−1−1")
>>> rt
28.00 days since 1996−1−1
>>> rt.value
28.0
>>> rt.units
'days since 1996−1−1'

A component time consists of the integer fields year, month, day, hour, minute, and the floating−point field
second. For example:

>>> ct = cdtime.comptime(1996,2,28,12,10,30)
>>> ct
1996−2−28 12:10:30.0
>>> ct.year
1996
>>> ct.month
2

The conversion functions tocomp and torel convert between the two representations. For instance, suppose
that the time axis of a variable is represented in units "days since 1979". To find the coordinate value
corresponding to January 1, 1990:

12/14

>>> ct = cdtime.comptime(1990,1)
>>> rt = ct.torel("days since 1979")
>>> rt.value
4018.0

Time values can be used to specify intervals of time to read. The syntax time=(c1,c2) specifies that data
should be read for times t such that c1<=t<=c2:

>>> c1 = cdtime.comptime(1990,1)
>>> c2 = cdtime.comptime(1991,1)
>>> ua = f['ua']
>>> ua.shape
(480, 17, 73, 144)
>>> x = ua.subRegion(time=(c1,c2))
>>> x.shape
(12, 17, 73, 144)

or string representations can be used:

>>> x = ua.subRegion(time=('1990−1','1991−1'))

Time types are described in Chapter 3.

1.12 Plotting data

Data read via the CDMS Python interface can be plotted using the vcs module. This module, part of the
Climate Data Analysis Tool (CDAT) is documented in the VCS reference manual. The vcs module provides
access to the functionality of the VCS visualization program.

To generate a plot:

 Initialize a canvas with the vcs init routine.•
 Plot the data using the canvas plot routine. •

For example:

>>> import cdms, vcs
>>> f = cdms.open('sample.nc')
>>> f['time'][:] # Print the time coordinates
[0., 6., 12., 18., 24., 30., 36., 42., 48., 54., 60., 66., 72.,
78., 84., 90.,]
>>> precip = f('prc', time=24.0) # Read precip data
>>> precip.shape
(1, 32, 64)
>>> w = vcs.init() # Initialize a canvas
'Template' is currently set to P_default.
Graphics method 'Boxfill' is currently set to Gfb_default.
>>> w.plot(precip) # Generate a plot
(generates a boxfill plot)

By default for rectangular grids, a boxfill plot of the lat−lon slice is produced. Since variable precip includes
information on time, latitude, and longitude, the continental outlines and time information are also plotted. If

13/14

the variable were on a non−rectangular grid, the plot would be a meshfill plot.

The plot routine has a number of options for producing different types of plots, such as isofill and x−y plots.
See Chapter 5 for details.

1.13 Databases

Datasets can be aggregated together into hierarchical collections, called databases. In typical usage, a
program:

 connects to a database•
searches for data opens a dataset•
accesses data•

Databases add the ability to search for data and metadata in a distributed computing environment. At present
CDMS supports one particular type of database, based on the Lightweight Directory Access Protocol (LDAP).

Here is an example of accessing data via a database:

>>> db = cdms.connect() # Connect to the default database.
>>> f = db.open('ncep_reanalysis_mo') # Open a dataset.
>>> f.variables.keys() # List the variables in the dataset.
['ua', 'evs', 'cvvta', 'tauv', 'wap', 'cvwhusa', 'rss', 'rls', ...
'prc', 'ts', 'va']

Databases are discussed further in Section 2.7.

Contents Previous Next

14/14

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch5_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html%5C#2.7_Database
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/front_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/front_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html

	PCMDI Software Portal - CHAPTER 1

